BIRZEIT UNIVERSITY
Physics 132
$2^{\text {nd }}$ Hour Exam
Time: 85:00 min
$\underline{2^{\text {nd }} \text { Semester 2017/2018 }}$
Date: 13 /5/2018
\qquad

\checkmark	Sec	Instructor Name	Classes Time	\checkmark	Sec	Instructor Name	Classes Time
\bigcirc	1	Areej Abdel Rahman	S 9:00-9:50	O	8	Hazem Abu Sara	W 12:00-12:50
\bigcirc	2	Hazem Abu Sara	M 12:00-12:50	O	9	Wael Karain	W 9:00-9:50
\bigcirc	3	Areej Abdel Rahman	M 14:00-14:50	O	10	Abdallah Sayyed	W 14:00-14:50
\bigcirc	4	Abdallah Sayyed	S 14:00-14:50	O	11	Abdallah Sayyed	W 11:00-11:50
\bigcirc	5	Dua' Abu Mura	S 14:00-14:50	O	12	Areej Abdel Rahman	W 12:00-12:50
\bigcirc	6	GHASSAN ABBAS	W 13:00-13:50	O			
\bigcirc	7	Areej Abdel Rahman	M 15:00-15:50				

Answer Sheet:

Q\#	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
$\mathbf{1}$					
2					
3					
4					
$\mathbf{5}$					
$\mathbf{6}$					
7					
$\mathbf{8}$					
$\mathbf{9}$					
10					
11					
$\mathbf{1 2}$					
13					
14					
15					
16					

Useful Formulae and Constants

1. $\varepsilon_{o}=8.85 \times 10^{-12} C^{2} / N . m^{2}$
2. $e=1.6 \times 10^{-19} \mathrm{C}$
3. $\mu_{o}=4 \pi \times 10^{-7} \mathrm{~T} . \mathrm{m} / A$
4. $m_{e}=9.11 \times 10^{-31} \mathrm{Kg}$
5. $m_{p}=1.67 \times 10^{-27} \mathrm{Kg}$
6. $g=10 \mathrm{~m} / \mathrm{s}^{2}$
7. $e V=1.6 \times 10^{-19} \mathrm{~J}$

Capacitance

$$
\text { 1. } q=C V
$$

2. $C=\frac{\varepsilon_{o} A}{d}$
3. $\frac{1}{C_{e q}}=\sum \frac{1}{C_{i}}$ (Series connection)
4. $C_{e q}=\sum C_{i}$ (Parallel connection)
5. $U=\frac{q^{2}}{2 C}$
6. $u=\frac{1}{2} \varepsilon_{o} E^{2}$
7. $\varepsilon_{o} \oint \kappa \vec{E} \cdot d \vec{A}=q$

Current and Resistance
8. $\vec{J}=n e \vec{v}_{d}$
9. $\vec{E}=\rho \vec{J}$
10. $R=\frac{\rho L}{A}$
11. $P=i^{2} R$

Circuits
12. $\varepsilon=\frac{d W}{d q}$
13. $V=\varepsilon\left(1-e^{-\frac{t}{R C}}\right)$

Magnetic Fields
14. $\vec{F}=q \vec{v} \times \vec{B}$
15. $q v B=\frac{m v^{2}}{r}$
16. $f=\frac{q B}{2 \pi m}$
17. $\vec{F}=i \vec{l} \times \vec{B}$
18. $\vec{\tau}=\vec{\mu} \times \vec{B}$
19. $U=-\vec{\mu} \cdot \vec{B}$
20. $W_{a}=U_{f}-U_{i}$

1- A potential difference of 300 V is applied to a series connection of two capacitors of capacitance $C_{1}=3 \mu F$ and $C_{2}=6 \mu F$. What is the charge on C_{1} ?
a) $1200 \mu \mathrm{C}$
b) $5400 \mu \mathrm{C}$
c) $400 \mu \mathrm{C}$
d) $200 \mu \mathrm{C}$
e) $600 \mu C^{* *}$

2- Two capacitors, $C_{1}=4 \mu F$ is charged so its charge is $q_{1}=80 \mu C$ and $C_{2}=6 \mu F$ is uncharged. The two capacitors are then connected in parallel. Find the charge on C_{1} ?
a) $80 \mu \mathrm{C}$
b) $32 \mu C^{* *}$
c) $48 \mu \mathrm{C}$
d) $40 \mu \mathrm{C}$
e) zero

3- A certain capacitor has a capacitance of C. After it is charged to a charge q and isolated, the two plates are brought closer together so its capacitance becomes 2C. Find the work done by the agent?
a) $-\frac{q^{2}}{2 C}$
b) $\frac{q^{2}}{2 c}$
c) $\frac{q^{2}}{c}$
d) $-\frac{q^{2}}{4 C} * *$
e) $\frac{q^{2}}{4 C}$

4- A slab of copper of thickness (b) is thrust into a parallel plate capacitor of plate area (A) and plate separation (d) as shown in the figure. What is the capacitance after the slab is introduced?
a) $\frac{\varepsilon_{0} A}{d}$
b) $\frac{\varepsilon_{0} A}{b}$
c) $\frac{\varepsilon_{0} A}{d+b}$
d) $\frac{\varepsilon_{0} A}{d-b} * *$
e) 0

5- A isolated conducting sphere whose radius is R and has a charge Q. How much potential energy is stored in the electric field of this charged conductor?
a) $\frac{k Q^{2}}{R}$
b) $\frac{k Q^{2}}{2 R} * *$
c) $\frac{k Q}{R}$
d) $\frac{k Q}{2 R}$
e) $\frac{k Q}{R^{2}}$

6- A certain wire has a resistance R. What is the resistance of a second wire, made of the same material, that is twice as long and has twice the radius?
a) $2 R$
b) $4 R$
c) $R / 2^{* *}$
d) $R / 4$
e) R

7- What is the current in a wire of radius (b) if the magnitude of the current density is variable and given by $J=a r$, in which a is constant and r is the radial distance?
a) $\pi b a^{3}$
b) $2 \pi b a^{2}$
c) $\pi b a^{3} / 3$
d) $2 \pi b a^{3} / 3$
e) $2 \pi a b^{3} / 3^{* *}$

8- What is the value of 1 Ampere. hour?
a) 3600 Watt
b) 3600 J
c) $3600 C^{* *}$
d) 3600 electrons
e) $1.6 \times 10^{-19} \mathrm{C}$

9- In the circuit shown, the ideal batteries have emfs, $\varepsilon_{1}=20 \mathrm{~V}, \varepsilon_{2}=5 \mathrm{~V}$ and $R_{1}=3 \Omega$, $R_{2}=2 \Omega$. If the potential at \boldsymbol{a} is $0 V$, what is the potential at \boldsymbol{b} ?
a) +3 V
b) +4 V
c) -4 V
d) $-14 V^{* *}$
e) +14 V

R_{2}

10- In the circuit shown find I_{2} ?
a) zero
b) 3.5 A
c) 7 A
d) $2 A^{* *}$
e) 5 A

$$
R_{1}=2 \Omega
$$

11- A capacitor with initial charge q_{0} is discharged through a resistor. What is the time taken by the capacitor to lose two-thirds of its charge?
a) $1.1 \tau^{* *}$
b) 0.41τ
c) 0.693τ
d) 0.18τ
e) 0.48τ

12- In an RC series circuit, emf $\varepsilon=10 V$, resistance $R=2 M \Omega$, and capacitance $c=2.5 \mu F$, the circuit closed at $t=0$ to begin charging. Find the voltage across the capacitor at $t=10 s$?
a) 3.7 V
b) 6.3 V
c) 1.4 V
d) $8.6 \mathrm{~V}^{* *}$
e) 9.5 V

13- At one instant, $\vec{v}=(200 \hat{\imath}+300 \hat{\jmath}) \mathrm{m} / \mathrm{s}$ is the velocity of a electron in a uniform magnetic field $\vec{B}=(0.05 \hat{\imath}-0.15 \hat{\jmath}) T$. At that instant find the force on the electron?
a) $+72 \times 10^{-19} \hat{k} N^{* *}$
b) $-72 \times 10^{-19} \hat{k} \mathrm{~N}$
c) $-45 \times 10^{-19} \hat{k} \mathrm{~N}$
d) $+88 \times 10^{-19} \hat{\jmath} N$
e) $+88 \times 10^{-19} \hat{\imath} \mathrm{~N}$

14- An electron moves with speed v into a region of uniform magnetic field B. The angle between them is $=65^{\circ}$. Describe the motion of the electron and find the periodic time?
a) Uniform circular motion, $T=\frac{2 \pi m}{e B}$
b) Nonuniform circular motion, $T=\frac{2 \pi m}{e B} \cos 65$
c) Helical motion, $T=\frac{2 \pi m}{e B} * *$
d) Helical motion, $T=\frac{2 \pi m}{e B} \cos 65$
e) Helical motion, $T=\frac{2 \pi m}{e B} \sin 65$

15- The coil in the figure, which is parallel to the $x z$ - plane, carries current $I=2 A$ in the direction indicated, has 3 turns and area of $4 \times 10^{-3} \mathrm{~m}^{2}$, and lies in a uniform magnetic field $\vec{B}=(2 \hat{\imath}-4 \hat{\jmath}-3 \widehat{K}) m T$. What is the potential energy of the coil in the magnetic field?
a) $-48 \mu J$
b) $+24 \mu J$
c) $+96 \mu J^{* *}$
d) $+72 \mu J$
e) zero

16- A magnetic field CAN:
a) Exert a force on a charge at rest

b) Accelerate a charge moving parallel to the field
c) Change the momentum of a charge ${ }^{* *}$
d) Change the kinetic energy of a charge
e) Not exist

